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ABSTRACT

An incident plane wave is scattered from a periodic corrugated
surface consisting of finite-depth parallel plates. Each period is
further divided by an additional finite-depth parallel plate into two
regions-one with the same density and wavenumber values as the
free-space region above the plates, and the second with different (but
constant) density and wavenumber values. The plates and bottoms
have soft (Dirichlet) boundaries.

Solutions of the Helmholtz equation, with unknown amplitude
coefficients, are assumed in the various geometric regions. By require-
ing that the pressure and velocity be continuous functions at the
boundaries, sets of linear equations are obtained that relate the ampli-
tude for arbitrary incident angles. Equations for normal incidence
are solved using a variation of the modified residue calculus tech-
nique involving two zero shifts, and the results yield the amplitudes
as values or residues of a meromorphic function. With the exception
of the finite depth, this paper is similar to NRL Report 7320.
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SCATTERING FROM A PERIODIC CORRUGATED SURFACE

Part 3-Finite-Depth Alternately Filled Plates with Soft Boundaries

1. INTRODUCTION

The problem considered in this report is the calculation of the scattered field which
results when plane waves are incident on a periodic corrugated surface, such as that illus-
trated in Fig. 1. The surface consists of infinitesimally thin finite-depth parallel plates with
lossless bottoms. The periodicity interval 21 is further divided by an additional parallel
plate into a "homogeneous" or "free-space" region of width (2a) specified by wavenumber
k and density PA, and a region of "inhomogeneity"(of width 2(1 - a)) whose density and
wavenumber structure each differ by a constant amount from the surrounding free-space
regions. The plates and bottoms have soft (i.e., Dirichlet) boundary conditions in terms of
the velocity potential 4A. This report is one of a series of papers and reports (1-4) in which
additional references to the literature can be found.

\ / ® k, pA

/

-2L-I- -aa& 2Jl-a 2.1+a

e2(B-a X= Z^ 2X Alz= -d -*__ L W /A

j I~~~~~~~~~~~~~~~~~~~~~
Fig. 1-Plane wave incident at an angle Oi on a finite-depth
(d) corrugated surface which is periodic (period 21). Shading
indicates regions of density and wavenumber inhomogeneity
(region C) as distinct from the free-space regions A and B.
The discrete scattering angles are indicated by On .

The basic formalism for the problem is presented in Sec. 2. Forms for the potential 4
are assumed in the various geometric regions. Each contains unknown amplitude coefficients.
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JOHN A. DeSANTO

In Sec. 3, the requirement that the pressure and velocity be continuous across the
interfaces of the regions leads to sets of linear equations relating the various amplitude
coefficients. The most general sets of linear equations, those for arbitrary incident angle,
are derived.

In Sec. 4 a special case of the equations, that of normal incidence, is solved using a
variation of the modified residue calculus method (5) which consists in the simultaneous
use of two sets of zero shifts. The amplitudes are shown to be related to either values or
residues of a meromorphic function.

A summary is presented in Sec. 5. The present report is confined to analytic results
only. The numerical procedure used to construct the two sets of zero shifts, and the
numerical results on reflection coefficients, are being worked on and will be published at
a later date.

2. BASIC FORMALISM

The problem is to calculate the scalar wave function or velocity potential Ady which
satisfies the two-dimensional Helmholtz equation*

(iX2 + aZ2 + ky)Y (xz) = 0 (2.1)

for the case of a plane waves V'i incident at angles Oi on an infinite number of periodically
spaced (period 21) parallel plates with finite depth d. The region between each pair of ad-
jacent plates is further divided into "homogeneous" and "inhomogeneous" regions by a
parallel plate located at a distance 2a from the left-most adjacent plate. Thus there are
three geometric regions of the problem which are indicated by the label y = A, B, or C in
Eq. (2.1).

Region A is the region for which z > 0, B is the region where -d < z < 0 and
-a < x + 2m1 6 a (m = 0, 1, 2, . . .), and C is where-d < 2, < 0 and a < x + 2ml < 21-a.
In the homogeneous regions A and B (see Fig. 1), kA = kB k = 27r/X where k is the in-
cident (free-space) wavenumber (X is the wavelength), and the densities are related by
PA = PB- We define the inhomogeneous region C by the wavenumber kC = NkA and the
density pC = PPA where N and p are constants. Hence, "inhomogeneous" is here taken
to mean a region whose wavenumber and density differ from the free-space values. The
surface z = S(x) is given by

S(x) { x a + 2ml (2.2)
1-d, x a +2m1(m=0,±1,...)j

and the wave functions NOB and AiC satisfy the soft (i.e., Dirichlet) boundary condition

O[x,S(x)] = 0. (2.3)

*The factor eZiwt is suppressed throughout this report.

2



NRL REPORT 7375 3

In addition, Oyr satisfies the following restrictions:

a. Ad and Vipy are finite in each region, except at the plate edges where IV0'1 =I
0 (rl(1/ 2)+E) with r, the radial coordinate, being centered at an edge. The form for e will
be given later.

b. Oy and V4' are continuous in each region, and the pressure py = -icopy4' and
the normal velocity vy = -ai'y/az are continuous across the interface z = 0.

c. The quantity H' A - Hi4 represents upgoing waves as z - °°.

The field representations, with notation similar to that used in Ref. 3, are given by

00

a.
4 'A(xz) = e ik(aox-Ioz) + EAeik(anx+nz)

n=-00

(2.4)

where the first term is the incident plane wave with

Un = ao + nA and A = -

and the superscript s stands for soft;

b. (2.5)V'B(Xz) = E Bj sin( (2a )) sin qjk(z + d)
j=1

where

= 1 - (jAt) 2
and t =;

a

00

Oc(x,z) = E sin Uku(x - a)] sin [rjk(z + d)]
j=1

u = ( At-1) and 2 2 2rj =N _(uU)

These field representations satisfy the boundary conditions at x = a, x = 21 - a, and at
z = -d. Field representations outside the above regions are given by the Floquet conditions
in Ref. (4), Eq. (2.10).

and

C

where

(2.6)
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3. GENERAL LINEAR EQUATIONS AND FLUX CONSERVATION

To find the linear equations relating the An and Bs amplitudes, we require the con-
tinuity of pressure and velocity across the interface z = 0, Ixj < a. This yields

PA ' A(x,0) = PBg(X,0) (3.1)

and

aZ (x, 0) a 4B (x 0) (3.2)az ~~az

Substituting O'A and OB from Eqs. (2.4) and (2.5) into Eqs. (3.1) and (3.2), solving for
the Bs coefficients in terms of the As, and manipulating the resulting equations as in Refs.
1 and 3 yields the set of linear equations

/ AeI~ (i-mkd ei+ qmk m(d + e-iqmkd

ET' On~nm q, 13n-qm/ \13o +qm 13o-qm)
n =-oo

_(27riqmBm ){ }
\ Atpm / ° 

where

nm e~-Tian/At - (-)mevioan/At (3.4)

and Pm = mAt/2.

The linear equations relating As and Cm result from applying continuity of pressure
and velocity at z = 0, for the condition a < x < 21 - a:

PA /A (x, °) = (XO) (3.5)

and

aOA (x,0) = aC (x,0) * (3.6)
az az

Substituting OA and Oc from Eqs. (2.4) and (2.6) into Eqs. (3.5) and (3.6), and solving
for the Cs coefficients in terms of the As , yields the set of equationsJ~~~~~~~~~

00

AsJnm _ Jom _r(t_-_)__()_7n + MC 37
lOn -+ Um g +OUm Atmu

n=-oo

4
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where

Jnm = evian/At(1 - (-fme1Tian/u) (3.8)

and l:

am = irm cos(rmkd) ± pum sin(rmkd) (3.9)

and um =rm IN= 1.

It is not convenient to further manipulate these equations into a different form as
was done with similar equations in Ref. 1.

The flux conservation relation follows from a similar derivation in Ref. 3 and from
the remark that in the present report there is no transmission loss down the wells as was
the case in that reference. The result is written in terms of the reflection coefficient R as

R -AdR = E [IAs2( 1 ) = 1 (3.10)

n n

where the sum is over integers n such that o3n is real. The Rn terms are the individual
spectral reflection coefficients.

The most general case of Eqs. (3.3) and (3.7) (i.e., arbitrary t 0 = sin Oi) is not dis-
cussed here. Instead, the special case of normal incidence (ao0 = 0), with t, p, and the wave-
number parameter N arbitrary, is discussed in the next section. The case of arbitrary a0
and t = 1 was previously discussed in Ref. 1.

4. CASE OF NORMAL INCIDENCE (oio = 0)

The general equations I have derived apparently cannot be solved by the methods out-
lined here. Instead, as in Refs. 3 and 4 the restriction ao = 0 is used. It is obvious from
Fig. 1 that the geometry of the problem is symmetric about the plane x = 0. The restric-
tion that ao = 0 induces an additional field symmetry and a resulting simplification of the
linear equations. The problem is thus a generalization of some earlier problems by
Deryugin (6) which can also be found in a book by Beckmann and Spizzichino (7). In
the limit ao = 0, Eqs. (3.3) and (3.7) reduce to

Bs = Cs = 0 (m even) (4.1)

and, excluding values of t for which cos(irn/t) = 0,
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00

Z Ane
n =0

/ \/ -iqmkd eiqmkdcos ( t )____q_ + On + q )

e iqmkd

1 -qm /
iriqmBm {1}

Atpm 0
= 0 (m odd)

s /7rn\
Anen cos( Z

/ j On ± Um
n =0

1

g~o ± U
+ 7r(t -) 1s(a)C = 0 (m odd)

en = 2, n>O .

These equations are of such form that they 'can be treated by the modified residue
calculus technique due to Mittra (5). Consider a meromorphic function F(W) which has
the following properties:

a. F(cw) has simple poles at Co = n (n =0, 1, 2, ... )and X =-f0 =-1.

b. F(w) has simple zeroes at Co = qm qm + 6m (m = 1, 3, 5,...) where the 6m
zero shifts (from the known qm values) are found from the functional symmetry relation

F(qm) = e2iqmkdF(-qm) (m odd) (4.4)

This condition is similar to Eq. (3.1) in Ref. 1. The asymptotic value of 6m (6 = lim =
Mn -00

0) plays a role in property (d) below. The value 6 = 0 can be derived directly from Eq.
(4.4). The calculation was illustrated in Ref. 3.

c. F(co) has simple zeroes at X = Um= m + Vm (m = 1, 3, 5, . . .) where the vm
"zero shifts" (from the known um values) are found from the functional symmetry rela-
tion

F(um) = asF(-um) (m odd) (4.5)

where

S_
s amam =S+ .

(am

The asymptotic values of a(m and vm defined by

(4.6)

( -iqmkd

1 +qm

and

(4.2)

where

(4.3)

6
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1, N = oo

a maims as =

N=finite

and

V - lim v - 2iu sin- (-)
M-*w 

0

play a role in property (d) below. The value of v is derived from the limit as m - 00 of
Eq. (4.5), and a similar calculation was performed in Ref. 3. The limit for p = 0 (or
N= 00) is the Deryugin (6,7) case.

d. F(w) = 0 (cf(3/ 2)E) as 11 W 00

where

e 7 _1+~- irsin-,lu) (4.7)(At ) 2iu ) in(2)'(47
e. As an edge is approached (r -* 0), a/ar = 0 (r-(1/2)+e).

Notice that unlike previous papers (1-4) where the zero shifting was employed only once,
here there are two different sets of shifts to calculate by means of Eqs. (4.4) and (4.5).
The reason there are now two different shifts is as follows. In Refs. 1 and 2 there was a
zero shift corresponding physically to the finite depth d, and in Refs. 3 and 4 there was a
zero shift corresponding to the "thickness" parameter t. This paper contains both finite
depth and "thick" plates, so that both zero shifts are necessary.

Integrals of the form

_______k e iqmkd\
(2iri)Yl F(w) )dco (m odd),c w-qm c + m

where C is a circle at infinity, yield residue series matching Eq. (4.2) if Eq. (4.4) is used
and the following identifications are made (R(3) is the residue of F(co) at w = 0):

R(f3n) = Anen cos(n t) X (4.7)

R(-1) = 1, (4.8)

and

B (2AtPm) eidqmF(-qm) . (4.9)

7
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Similarly, integrals of the form

(2lri)ylfc ( ) dc (m odd)
(0± Um

yield residue series matching Eq. (4.3) if use is made of Eq. (4.5) and the additional iden-
tification

CS 4mu 2
CM~ 7ra;;7)fl-um) (4.10)

Thus, the three sets of amplitude coefficients As, Bs, and Cs are known when F(w) is
known be means of Eqs. (4.1), (4.7), (4.9), and (4.10). The function F(w) can be con-
structed by using the methods given in Refs. 1-4. The result is

2e iL(1+w)
F(co) = 1e(02 Ho(w, a)

I (-1, )
0

Ho(co, Vu)

I7(- 1, v
0

HI(-1, 3)

II (w, o)
(4.11)

where the infinite products are defined as

IT 17 (I -Iwn ) nnA)
n =1

00

NO~, 17( IT m- L- 
q 2 m-1 +/i(m-A)Aj

m_ - 2 At + 62m-1)e

00

I17(co, 0 =1f(i
m =1

) \ ( U2M2 1 em/i(2m-1)u
Uml (i(2m - )u + m-)

L = [2t ln(2) + (t- 1) ln(t -1) - t ln(t)]

These products have been discussed in Refs. 1-4, and it is clear that F(w) satisfies prop-
erties (a)-(e). Its similarity to the meromorphic function in Ref. 3 is noted. The ampli-
tudes are thus given by Eqs. (4.7), (4.9), and (4.10) and are

8

and

Also,

(4.12)



NRL REPORT 7375

Bs = 4At
m giripmqm

s 8
In 7rmas+In

1 O(-qm, jq)

17 (-1, q)
0

H0 (-un, q)

In0(-1, q )

0 (on, qj)

1 (-1q)
0

I7O(gn, _U)

H (-1,u)
0

I 0 (-qm, u)

H (-1, u)
0

Ho(-um, u)

H7(-1, Vi)

71 (-1, 0) ei(L-LqM-kdqM)

1 (4

H1 (-1,13) eiL(1-um) . (4

I71(-Um, M 

I7l (-On, 0 )
H (1, a)

1

4.14)

4.15)

Thus, these amplitudes are known when the zero shifts 5m and vm are known. The
numerical calculation of these shifts is different from the calculations given in Refs. 1-4.
Both the calculation and the numerical results for the reflection coefficients Rn will be
developed in a future paper.

5. SUMMARY

General linear equations relating field amplitude coefficients for plane waves reflected
from periodic, inhomogeneously loaded, finite-depth parallel plates with soft boundaries
have been presented. Solving for the special case of normal incidence (ao = 0) leads to
simplifications in the linear equations which enable them to be solved using a variation of
the modified residue claculus scheme. The edge behavior of the fields was presented and
is similar to the results given in Ref. 3. Only the analytic results are presented in this re-
port. The numerical procedures used, and the numerical results, are being worked on and
will be published at a later date.
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